
Integral 

- Know what definition of Indefinite Integral is. 

- Know what Definite Integral is. 

- Know what Length of a curve is. 

- Know what Area under a curve is. 

- Know what Volume of solids is.  

- Know what Surface area is.  

 

 

Objectives 



A) Indefinite Integral 

 The family of antiderivatives of a function f 

indicated by 

 

 

 

 The symbol is a stylized S to indicate 

summation 

2 

( )f x dx



Indefinite Integral 

 The indefinite integral is a family of functions 

 

 

 

 The + C represents an arbitrary constant 

 The constant of integration 
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Properties of Indefinite Integrals 

 The power rule 

 

 

 

 The integral of a sum (difference) is the sum 

(difference) of the integrals 
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Properties of Indefinite Integrals 

 The derivative of the indefinite integral is the 

original function 

 

 

 A constant can be factored out of the integral 
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 Determine the indefinite integrals as specified 

below 
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Examples 



Indefinite Integrals of Exponential 

Functions 
 

   

 

   

 

   

 

    
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Examples 

 Use the exponential rules to determine these 

integrals 
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Indefinite Integral of x -1 

  The rule is 

 

 Try it out … 
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Indefinite Integrals of Trigonometric 

Functions 
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Example 1 

11 

Find the general indefinite integral  

 ∫ (10x4 – 2 sec2x) dx 

 

∫(10x4 – 2 sec2x) dx = 10 ∫ x4 dx – 2 ∫ sec2x dx 

          = 10(x5/5) – 2 tan x + C  

          = 2x5 – 2 tan x + C 

 You should check this answer by differentiating it. 



Example 2 
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Evaluate 

 
 

 

 

2

cos

sin
d






2

cos 1 cos

sin sinsin

csc cot csc

d d

d C

 
 

 

   

  
   

  

   

 





Example 1 
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Evaluate 
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B) Definite Integral 



Example 2 
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Evaluate 
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Example 3 
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Evaluate 
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If we want to approximate the length of a 

curve, over a short distance we could 

measure a straight line. 

ds

dx

dy

By the pythagorean theorem: 

2 2 2ds dx dy 

2 2ds dx dy 

2 2ds dx dy   We need to get dx out from under the 

radical. 
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Length of Curve (Cartesian) 



C) Length of a curve (Arc Length) 
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 If a curve has the equation x = g(y), c ≤ y ≤ d, 

and g’(y) is continuous, then by 

interchanging the roles of x and y , we obtain 

its length as: 

 
2

2
1 '( ) 1

d d

c c

dx
L g y dy dy

dy

 
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Find the length of the arc of the semi-cubical 

parabola y2 = x3 between the points (1, 1)  

and (4, 8). 

Example 1 

19 



3 2y x

1 23
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-Thus, the arc length formula gives: 

 
 

 

 

 

2
4 4

9
41 1

1 1
dy

L dx x dx
dx

 
   
 

 

20 



 If we substitute u = 1 + (9/4)x,  

then du = (9/4) dx. 

 

 When x = 1, u = 13/4.  

When x = 4, u = 10. 

 

 
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Find the arc length function for the curve 

y = x2 – ⅛ ln x taking P0(1, 1) as the 

starting point. 

Example 1 

1
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 Thus, the arc length function is given by: 

 
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For instance, the arc length along  

the curve from (1, 1) to (3, f(3)) is: 

2 1
8

(3) 3 ln3 1

ln3
8

8

8.1373

s   

 


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D) Area under a Curve 
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Consider y=x2, If we wanted to find the area under 

this Curve between x=0 and x=1 we could use strips 

like this : 

1- Area between the curve and the x-axis 

26 



Finding the Area 

With increasing strips, ∆x ∆y tend to Zero and    

 

 we can write                                       and  

  

And So 

If write the area of each of the individual rectangle as ∆A 

 

Then the area of each individual rectangle is between 
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ba

The area between a and b under 

the curve is 
 

 

x

y

 xyArea  ~  

As the number of rectangles increases the 

approximation to the area improves  

0xn

Limit  
  

 xy0xArea =  

This Limit is written as  
b

a
ydx
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


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Example 1 
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2- Splitting Areas for Integration 

Where a curve is below the x-axis the integral is negative 

 

Therefore if the curve crosses the x axis we need to split the 

integration into separate parts. 

dxxfdxxfArea  


0

1

2

0
)()(
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Example 2 

 
Find the area enclosed by the x axis and the curve 

dxxxxdxxxxArea  


0

1

2

0
)1)(2()1)(2(

)1)(2(  xxxy

y = 0 when  x = 0 

  x = 2 and  

  x = -1 

The curve is below the axis for  0 < x < 2    

and above the axis for -1 < x < 0 
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Find the area enclosed by the x axis and )1)(2(  xxxy
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dyy 2
3

1

2  

Find the area bounded by x=y2+2, y-axis, y=1 and 

y=3 
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
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
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12

Area = 12 2/3   square units 

Example 3 

3- Area between the curve and the y-axis 
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 Consider the region S that lies between two 

curves y = f(x) and y = g(x) and between  

the vertical lines x = a and x = b.  

 Here, f and g are  

continuous functions  

and f(x) ≥ g(x) for all  

x in [a, b].  

4- Areas between two Curves 

34 



 As we did for areas under curves, we divide S into 

n strips of equal width and approximate the i th 

strip by a rectangle with base ∆x and height                         

. ( *) ( *)i if x g x
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 Thus, we define the area A of the region S as the 

limiting value of the sum of the areas of these 

approximating rectangles.  

 

 

 

 

 The limit here is the definite integral of f - g. 

 
1

lim ( *) ( *)
n

i i
n

i

A f x g x x




  
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 Find the area of the region bounded above by 

y=ex, bounded below by y = x, and bounded on 

the sides by x = 0 and x = 1.  

 

Example 4 
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 So, we use the area formula with y=ex, g(x) = x, a 

= 0, and b = 1: 

 

 
1 1

21
2 00

1
1 1.5

2

x xA e x dx e x

e e

    

    


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Find the area of the region enclosed by 

the parabolas y = x2 and y = 2x - x2.  

Example 5 

 First, we find the points of intersection of  

the parabolas by solving their equations 

simultaneously. 

 

 This gives x2  = 2x - x2, or 2x2 - 2x = 0.  

 

 Thus, 2x(x - 1) = 0, so x = 0 or 1.  

 

 The points of intersection are (0, 0) and (1, 1). 
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 From the figure, we see that the top and 

bottom boundaries are:  

 yT = 2x – x2   and  yB = x2 

40 



 The area of a typical rectangle is  

 (yT – yB) ∆x = (2x – x2 – x2) ∆x  

and the region lies between x = 0 and x = 1. 

So, the total area is:  

   
1 1

2 2

0 0

1
2 3

0

2 2 2

1 1 1
2 2

2 3 2 3 3

A x x dx x x dx

x x

   

   
      

  

 
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 To find the area between the curves y = f(x) and 

y = g(x), where f(x) ≥ g(x) for some values of x 

but g(x) ≥ f(x) for other values of x, split  

the given region S into several regions S1,  

S2, . . . with areas  

A1, A2, . . . 
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Find the area of the region bounded by the 

curves y = sin x, y = cos x, x = 0, and x = π/2. 

Example 6 

The points of intersection occur when  sin x = cos x, 

that is, when x = π / 4 (since 0 ≤ x ≤ π / 2).  
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Observe that cos x ≥ sin x when  

0 ≤ x ≤ π / 4 but sin x ≥ cos x when  

π / 4 ≤ x ≤ π / 2. 

44 



So, the required area is: 

   

   

2

1 2
0

4 2

0 4

4 2

0 4

cos sin

cos sin sin cos

sin cos cos sin

1 1 1 1
0 1 0 1

2 2 2 2

2 2 2

A x x dx A A

x x dx x x dx

x x x x



 



 



   

   

    

   
           
   

 



 
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First find the points of intersection of 

curve y=x2 and line y=x+2 

At the points of intersection 

22  xx

022  xx

0)1)(2(  xx

12  xorx
These will be our limits of integration 

Example 7 
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Some regions are best treated by regarding 

x as a function of y. 

- If a region is bounded by curves with equations x 

= f(y), x = g(y), y = c, and  

y = d, where f and g  

are continuous and  

f(y) ≥ g(y) for c ≤ y ≤ d,  

then its area is: 

 ( ) ( )
d

c
A f y g y dy 
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Find the area enclosed by the line y = x - 1 

and the parabola y2 = 2x + 6. 

Example 8 

 By solving the two equations, we find that the 

points of intersection are (-1, -2) and (5, 4). 

 We solve the equation of the parabola for x. 

 From the figure, we notice  

that the left and right  

boundary curves are: 

 

 

 We must integrate between  

the appropriate y-values, 

   y = -2 and y = 4. 

 

21
2

3

1

L

R

x y

x y
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Thus, 
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 
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       
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


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E) Volume of solids 

(Volume of Revolution)  

1- Find the Volume of revolution using the disk method 

2- Find the volume of revolution using the washer method 

3- Find the volume of revolution using the shell method 

4- Find the volume of a solid with known cross sections 

51 



52 



𝑓(𝑥) 

𝑓(𝑥) 

𝑥 

𝑥 

𝑦 = −𝑘 

𝑑𝑉 = π 𝑓 𝑥 + 𝑘 2𝑑𝑥 

𝑑𝑉 = π 𝑓 𝑥 2𝑑𝑥 

𝑎                         𝑏 

𝑎                         𝑏 

𝑉 =  𝑑𝑉

𝑏

𝑎

 𝑑𝑉 = 𝜋𝑟2𝑑𝑥 𝑉 = lim
∆𝑥→0

 ∆𝑉𝑖  = lim
∆𝑥→0

 𝜋𝑟2∆𝑥

𝑛

𝑖=1

𝑛

𝑖=1

 

d𝑥 

d𝑥 
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𝑑𝑉 = π 𝑘 − 𝑓 𝑥 2𝑑𝑥 

𝑓(𝑥) 

𝑥 

𝑦 = 𝑘 
𝑑𝑉 = π 𝑓 𝑥 − 𝑘 2𝑑𝑥 

𝑎                         𝑏 

𝑓(𝑥) 

𝑥 𝑎                    𝑏 

𝑦 = 𝑘 

d𝑥 
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𝑑𝑉 = π 𝑥 𝑦 2𝑑𝑦 

𝑉 =  𝑑𝑉

𝑑

𝑐

 

55 



Determine the volume of the solid obtained by rotating the region 

bounded by 𝒚 = 𝒙𝟐 − 𝟒𝒙 + 𝟓, 𝒙 = 𝟏, 𝒙 = 𝟒 and the x-axis about the x-

axis. 

Example: 
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The area of one disk is: 

The limit of integration is from x=1 to x=4 
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The volume of this solid is then, 
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A solid obtained by revolving a region around a line. 

𝑑𝑉 = π 𝑦1 𝑥 2 − 𝑦2 𝑥 2 𝑑𝑥 

A = 𝜋 
𝑜𝑢𝑡𝑒𝑟 
𝑟𝑎𝑑𝑖𝑢𝑠

2

−
𝑖𝑛𝑛𝑒𝑟 
𝑟𝑎𝑑𝑖𝑢𝑠

2

 

𝑦1(𝑥) 

𝑦2(𝑥) 

𝑥 
𝑎              

𝑏 
𝐴 

𝑑𝑉 = 𝐴 𝑑𝑥 𝑉 =  𝑑𝑉

𝑏

𝑎

 

𝑥1(𝑦) 

𝑥2(𝑦) 

𝐴 

𝑐 

𝑑 

𝑑𝑉 = π 𝑥1 𝑦 2 − 𝑥2 𝑦 2 𝑑𝑦 
𝑑𝑉 = 𝐴 𝑑𝑦 𝑉 =  𝑑𝑉

𝑑

𝑐
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Example: 

Find the volume of the solid formed by revolving the region bounded 

by y = x  and y = x² over the interval [0, 1] about the x – axis. 

𝑉 = 𝜋 𝑥 − 𝑥4 𝑑𝑥 

1

0

 

𝑉 = 𝜋 𝑥 2 − 𝑥2 2 𝑑𝑥 

1

0

 

𝑉 = 𝜋
𝑥2

2
−

𝑥5

5
 
1
0

 

𝑉 =
3

10
 

61 



Find the volume of the solid of revolution formed by rotating the finite region bounded 

by the graphs of about the x-axis.   

Example: 

Find the volume of the solid formed by revolving the region bounded 

by y = x-1  and y = (x-1)² over the interval [1, 2] about the x – axis. 
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Summing up the volumes of all these infinitely thin shells, we get the total volume 

of the solid of revolution: 

 

𝑉 =  𝑑𝑉

𝑏

𝑎

 

𝐴 

𝐴 

A =  2𝜋 𝑟 ℎ = 2𝜋 𝑥 ℎ 
𝑑𝑉 = 𝐴 𝑑𝑥 = 2𝜋 𝑥 ℎ 𝑑𝑥 

𝑑𝑉 = 𝐴 𝑑𝑥 = 2𝜋 𝑥 𝑦1(𝑥) − 𝑦2(𝑥) 𝑑𝑥 𝑦1(𝑥) 

𝑦2(𝑥) 

𝑦(𝑥) 

𝑎           𝑏 

𝑎                              𝑏 

𝑑𝑉 = 𝐴 𝑑𝑥 = 2𝜋 𝑥 𝑦 𝑥 𝑑𝑥 

𝑉 = 2𝜋  𝑥 𝑦 𝑥 𝑑𝑥

𝑏

𝑎

 

𝑉 = 2𝜋  𝑥 𝑦1(𝑥) − 𝑦2(𝑥) 𝑑𝑥

𝑏

𝑎
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Find the volume of the solid of revolution formed by rotating the region bounded 

by the x-axis and the graph of  𝒚 = 𝒙   from x = 0  to  x =1, about the y - axis.    

𝑉 = 2𝜋 𝑥 𝑥𝑑𝑥

1

0

 

𝑉 = 2𝜋
2

5
𝑥5/2 0

1
 

𝑉 =
4𝜋

5
 

𝑦 = 𝑥 

Example: 
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 Find the volume of the solid of revolution formed by rotating the finite region 

bounded by the graphs of 𝒚 = 𝒙 − 𝟏  and  𝒚 = (𝒙 − 𝟏)𝟐  about the y-axis.    

𝑉 = 2𝜋  𝑥 𝑥 − 1 − (𝑥 − 1)2 𝑑𝑥

2

1

 

𝑉 =
29

30
𝜋 

𝑉 = 2𝜋  𝑥 𝑥 − 1𝑑𝑥

2

1

 − 2𝜋  𝑥(𝑥 − 1)2𝑑𝑥

2

1

 

u = x – 1        x = 1   

u=0   

x = u + 1        x = 2   

u=1   

du = dx 

 𝑉 = 2𝜋  (𝑢 + 1) 𝑢𝑑𝑥

1

0

 − 2𝜋  (𝑢 + 1)𝑢2𝑑𝑥

1

0

 

𝑉 = 2𝜋
2𝑢5/2

5
+

2𝑢3/2

3
−

𝑢4

4
−

𝑢3

3

1

0
= 2𝜋

2

5
+

2

3
−

1

4
−

1

3
 

Example: 
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Find the volume of the solid obtained by rotating the region bounded by 𝒚 = 𝒙 −
𝒙𝟐 and 𝒚 = 𝟎 about the line 𝒙 = 𝟐 

Example: 
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Find the volume of the solid obtained by rotating about the y-axis the region 

between y=x and y=x2 

Example: 
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Procedure:  volume by slicing 

o - Sketch the solid and a typical cross-section. 

o - find a formula for the area, A(x), of the cross-section. 

o - find limits of integration. 

o - integrate A(x) to get volume. 
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Find the volume of  a solid whose base is the circle x2 + y2 = 4  and 

where cross sections perpendicular to the x-axis are all squares 

whose sides lie on the base of the circle.   
  

  

 x2 + y2 = 4           𝑦 = 4 − 𝑥2 

𝑎 = 2 4 − 𝑥2 

𝑑𝑉 =  𝐴 𝑑𝑥          𝐴 = 𝑎2  

𝑉 =  4  4 − 𝑥2 𝑑𝑥  =
128

3

2

−2

 

Example: 
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Find the volume of  a solid whose base is the circle x2 + y2 = 4  and 

where cross sections perpendicular to the x-axis are all equilateral 

triangles whose sides lie on the base of the circle.   
  

𝑑𝑉 =  𝐴 𝑑𝑥          𝐴 = ? 

x2 + y2 = 4           𝑦 = 4 − 𝑥2 

 𝐴 =  
1

2
𝑎 𝑎2 −

𝑎

2

2

=
3

4
 𝑎2 = 3 4 − 𝑥2  

𝑉 =  3 4 − 𝑥2 𝑑𝑥 =
32

3
≈ 18.475

2

−2

 

Example: 
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Find the volume of  a solid whose base is the circle x2 + y2 = 4  and where cross 

sections perpendicular to the x-axis are all  semicircles whose sides lie on the 

base of the circle.   
  

  𝐴 = ? 

x2 + y2 = 4           𝑦 = 4 − 𝑥2 

𝐴 =  
1

2
 𝜋 

𝑎

2

2

=
1

8
𝜋 𝑎2 =  𝜋 

4 − 𝑥2

2
 

𝑑𝑉 = 𝐴 𝑑𝑥  

 𝑉 =  𝜋 
4 − 𝑥2

2
𝑑𝑥

2

−2

=
16𝜋

3
≈ 16.755 

Example: 
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Find the volume of  a solid whose base is the circle x2 + y2 = 4  and where 

cross sections perpendicular to the x-axis are all Isosceles right triangles 

whose sides lie on the base of the circle.   
  

𝐴 = ? 

x2 + y2 = 4           𝑦 = 4 − 𝑥2 

𝐴 =  
1

2
𝑎 

𝑎
2

tan 𝜋
4 

=
 𝑎2

4
= 4 − 𝑥2 

𝑑𝑉 = 𝐴 𝑑𝑥  

 𝑉 =  4 − 𝑥2  𝑑𝑥 =
32

3
≈ 10.667

2

−2

 

Example: 
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F) Area of a Surface  

of Revolution 



Area of a Surface of Revolution 

 A surface of revolution is formed when a curve is 

rotated about a line.  

 The lateral surface area of a circular cylinder  

with radius r and height h is taken to be:  

        

       A = 2πrh 
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Consider the surface shown below. 

 
 It is obtained by rotating the curve y = f(x), a ≤ x ≤ b, about 

the x-axis, where f is positive and has a continuous 

derivative. 
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 If yi = f(xi), then the point Pi(xi, yi) lies  

on the curve. 
 The part of the surface between xi–1 and xi is 

approximated by taking the line segment Pi–1 Pi  

and rotating it about the x-axis. 
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The result is a band with slant height 

l = | Pi–1Pi | and average radius  

  r = ½(yi–1 + yi).  
 

So, its surface area is: 

1
12 | |

2

i i
i i

y y
P P 




2S yds 
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 
2

( ) 2 ( ) 1 '( )g x f x f x 

 

2
* *

1

2

lim 2 ( ) 1 '( )

2 ( ) 1 '( )








   

 





n

i i
n

i

b

a

f x f x x

f x f x dx

2

2 1
b

a

dy
S y dx

dx


 
  

 

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For rotation about the y-axis, the 

formula becomes: 

 
 

  

 

2S xds 

2

1
dx

ds dy
dy

 
   

 
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Example 1 

 The curve                       , –1 ≤ x ≤ 1, is an arc  

of the circle x2 + y2 = 4 . 

 Find the area of the surface  

obtained by rotating this  

arc about the x-axis. 

 

 The surface is a portion of  

a sphere of radius 2. 

24y x 
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2 1 21
2

2

(4 ) ( 2 )

4

dy
x x

dx

x

x

  






2
1

1

2
1

2

21

1
2

21

1

1

2 1

2 4 1
4

2
2 4

4

4 1 4 (2) 8

dy
S y dx

dx

x
x dx

x

x dx
x

dx







  









 
   

 

  


 


  








87 



 The arc of the parabola y = x2  from (1, 1)  

to (2, 4) is rotated about the y-axis.  

 

 Find the area of  

the resulting surface. 

Example 2 
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 Using y = x2  and dy/dx = 2x, 

 

2
2

1

2
2

1

2

2 1

2 1 4









 
   

 

 







S x ds

dy
x dx

dx

x x dx
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 Substituting u = 1 + 4x2, we have du = 8x dx.  

 

 Remembering to change the limits  

of integration, we have: 

17 17
3 22

3 554 4

(17 17 5 5)
6

 



    

 

S u du u
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